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ABSTRACT 

It is suggested that applying heat d i rec t ly to a rain cloud, 

or to a mois t a i r m a s s with rain potential , may a l te r the natural 

precipi ta t ion in a given geographical region. The immediate effect 

of the heat is to i nc r ea se the buoyancy of the cloud or a i r pa rce l . 

The resu l t , which depends on a number of in te r re la ted factors may 

be e i ther (a) to cause precipi ta t ion where it would not natural ly 

occur , or (b) to suppress precipi ta t ion where it would natural ly 

occur . Several possible applications a r e suggested. Since the 

heat supplied is supplennented by the latent heat resul t ing from con­

densation in the mois t a i r m a s s , the resu l t s may more than justify 

the cos t . However , substant ial amounts of heat a r e involved. The 

heat can be supplied from fossi l fuels , nuclear reac t ions , or a com­

bination of both; but the logis t ics favor the use of la rge nuclear 

r eac to r s whereve r safety c r i t e r i a can be met . Not only the efficienc 

and economics of the p r o c e s s , but a lso its feasibil i ty, can be finally 

decided only on the bas is of information that is not now avai lable . 
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I. INTRODUCTION 

1 
According to Dodge, the total water available as rainfall on 

land a r e a s is much m o r e than is requi red to supply all of man ' s cur ren t 

needs . In fact, rainfall is es t imated to provide about 30 000 gallons of 

water per day for every inhabitant now on the ea r th . Since the land mass 

covers only about one-fifth of the surface of the ear th , the total per capita 

rainfall over the ent i re ea r th must be substantial ly h igher . However, the 

pa t tern of rainfall does not coincide with human needs . A par t ia l solution 

to the problem of dis t r ibut ion along the l ines suggested in this study could 

resul t in substant ia l benefit to s t ra teg ica l ly located a r e a s . 

The suggested method of a l ter ing rainfall is to apply heat d i rec t ly 

to rain clouds or mois t a i r m a s s e s . (For s implici ty , the t e rms " ra in 

clouds" and "mois t a i r nnasses" will here be used interchangeably, although 

it is rea l ized that they a r e not ident ica l . ) The l i t e r a tu re d i scusses var ious 

mechan i sms by which such heating may induce precipi ta t ion. One theory 

requ i res ice par t ic les as nuclei for the formation of ra indrops in the cloud. 

This theory could account for rainfall that is repor ted to have occurred 

under the following c i r c u m s t a n c e s . As a cloud initially moving over a r e ­

lat ively cool t e r r e s t r i a l surface pas ses over a hot ter a r e a , or over a la rge 

natural heat source such as a burning fores t , its forward elements absorb 

heat on the i r under sides and rapidly r i s e . The resul t ing expansion and 

contact with cooler s t r a t a causes the water d rop le t s , which a r e a few 

microns in d i ame te r , to f reeze into smal l ice par t ic les and drop back into 

the body of the oncoming cloud. The ice par t ic les have a lower vapor 

p r e s s u r e than water drople ts and, in the p resence of sa tura ted air in the 

clouds, rapidly grow to a d iamete r of severa l hundred microns and achieve 

1 

B . F , Dodge, Am. Scientist 48, 476 (I960). 



settling veloci t ies sxifficient to overcome the updrafts in the cloud. The 
2 

ice pa r t i c l e s then fall and mel t , reaching the ea r th as r a ind rops . 

Prec ip i ta t ion may a lso be achieved by orographic lifting. Under 

these condit ions, a cloud may be forced upward as it moves over a r is ing 

land m a s s , as on approaching a mountain range . The inc rease in the a l ­

titude of the cloud resu l t s in cooling due to adiabatic expansion as well as 

to a colder environment and provides the n e c e s s a r y conditions for p r e c i p ­

itation. 

On the other hand, clouds which a r e uniformly heated with com­

parable amounts of energy do not yield precipi ta t ion . Thus, on c lea r days, 

one can observe clouds floating undisturbed in the sky, although they a r e 

receiving substant ial amounts of radiant energy from so lar and t e r r e s t i a l 
2 

s o u r c e s . P e r r i e r epor t s that the solar radiat ion on an ea r ly morning 

fog will cause it to r i s e and, if the fog was original ly sufficiently heavy, to 

float off as a cloud. 

Briefly then, it may be possible e i ther to conserve (for r ecovery 

at another t ime and place) or to d iss ipa te clouds by the judicious use of 

heat . The resu l t produced on the cloud may be de termined by the amount, 

r a t e , and method in which the heat is applied. 

II. APPLICATIONS 

Some of the obvious and well known civilian applications for which 

this p rocess of modifying weather m a y b e prac t icable a r e : 

1. To provide water for supplementary i r r iga t ion and domest ic 

u s e . 

2. To provide water to supplement hydroe lec t r ic power and land 

rec lamat ion p ro jec t s . 

3. To suppress rain or e l iminate cloud cover over a pa r t i cu la r 

a r e a for the benefit of outdoor functions such as athlet ic 

events , construct ion p ro jec t s , e tc . 

4 . To re l ieve drought or extended heat waves , 

_ 
D. W. P e r r i e , Cloud Phys ics (John Wiley & Sons, Inc. , New York, 

(I960). 



5. To minimize flood c r e s t s by divert ing rainfall from threatened 

a r e a s . 

6. To remove fog from a i rpor t s and h a r b o r s . 

7. To reduce smog concentrat ions over highly populated a r e a s . 

If the method is feasible , its p rac t ica l utili ty will depend on sui t ­

able meteorologica l condit ions, wind d i rec t ions , rel iable weather f o r e ­

cast ing, and economic cons ide ra t ions . It cu r ren t ly appears that the cost 

of water produced by this method cannot compete with pr ices normal ly paid 

by domest ic and indus t r ia l wa te r u s e r s . The method i s , the re fore , probably 

l imited to special ized types of appl icat ions . As d iscussed l a t e r , however, 

the l imiting p r ice will va ry with the application and the existing conditions; 

and for many purposes the cost of water is only a smal l par t of the over ­

all economic problem, 

A par t i cu la r advantage of the p rocess is that the cost depends p r i ­

m a r i l y upon the cost of the heat required to lift the cloud and possibly to 

init iate the precipi ta t ion mechanisnns, not neces sa r i l y on the horizontal 

d is tance the wate r mus t be t r anspo r t ed . 

I l l , ASSUMPTIONS 

Several simplifying assumpt ions have been made in this p r e l i m ­

inary d i scuss ion . Before the feasibil i ty of the p rocess can be a s se s sed , 

it is c lea r that the val idi ty and range of applicabili ty of these assumptions 

must be tes ted exper imenta l ly . Such a t es t p rogram may also reveal effects 

not included h e r e . The pr incipal assumpt ions made a r e : 

1. A cloud cons is t s of sa tura ted a i r in which a la rge number of 

water drople ts or ice pa r t i c l e s , with dimensions of a few 

m i c r o n s , a r e d i spe r sed . 

2, A cloud can be t r ea ted as an independent body suspended in 

the a t m o s p h e r e . This assumption does not exclude a con­

tinuous exchange of water vapor between the cloud and the 

surrounding a tmosphere or an exchange of a i r with other 

adjoining a i r p a r c e l s . Changes in the size and shape of 



clouds can be to lera ted , as can minor los ses of precipi table 

wa te r during t r ea tmen t . In fact, for the conservat ion app l i ­

cation, the complete diss ipat ion of the cloud as a resul t of 

heating is pe rmis s ib l e provided that the mois tu re will be 

available at the des i red t ime and place and can be p rec ip i ­

tated by fur ther heating or by other m e a n s . 

The effect of introducing heat at re la t ively high t empera tu re 

into the cloud should not introduce undesi red tu rbulence . 

Although clouds a re re la t ively cold (10 C to -4 C) at a l t i ­

tudes of in t e re s t and changes in the des i r ed t e m p e r a t u r e 

a r e smal l (from a fract ion of a degree to a few degrees ) , 

engineering considera t ions with convection-type equipment 

requ i re that the t r ans fe r of heat into the cloud should be 

accomplished at significantly higher t e m p e r a t u r e s . The 

t r ans fe r of heat by a source of infrared radiat ion would 

minimize tu rbu lence . 

Since the ove r - a l l t e m p e r a t u r e difference between the r is ing 

cloud and the a tmosphere is smal l , the heat los ses to the 

surrounding a tmosphere by conduction and radiat ion a r e 

a s sumed to be negligible or to le rab ly sma l l . A n e c e s s a r y 

r equ i remen t may be that the cloud volume must be above a 

cer ta in c r i t i ca l s ize for the cloud to maintain its integri ty 

during the process ing cycle . 

The change in altitude of the cloud as a resu l t of heating, if 

conservat ion is des i r ed ( i . e . , if the mo i s tu re is to remain 

available for precipi ta t ion) , does not significantly dis turb 

the or iginal a tmospher ic ba lance . That i s , the nornnal a t ­

mospher ic p r o c e s s e s assoc ia ted with its original height 

(such as diurnal heating or nocturnal cooling) do not d e t r i ­

menta l ly affect the stabil i ty of the cloud at the higher 

alt i tude during its per iod of t r a v e l . 



6. There is a significant t empe ra tu r e gradient in a cloud of 

substantial height. It is assumed that this t empera tu re 

gradient will r emain nea r ly constant during the heating 

period and at the inc reased altitude of the p rocessed cloud. 

This assumption does not admit of t empera tu re inversions 

which may conceivably be encountered in actual p rac t i ce , 

7, Wind veloci t ies va ry in the different s t r a ta in which a la rge 

cloud res ides or to which it may be lifted. In such c a s e s , 

the p rocessed cloud may subdivide into sma l l e r units wi th­

out significant loss of over -a l l cloud volume, 

IV. THERMODYNAMICS 

The optimum conditions for conservat ion exist when the cloud 

m a s s is (a) conditionally unstable , i . e . , when the prevail ing lapse ra te 

of the surrounding a tmosphere approaches , but does not equal, the sa tu­

rated adiabatic lapse ra te in the cloud; and (b) when the absolute humidity 

of the a i r in the cloud is high and the re is a high concentrat ion of free 

w a t e r . 

Consider the case in which a stable inc rease in altitude of a 

cloud is de s i r ed . As heat is uniformly added, the cloud will r i se and be 

cooled by expansion in the l ess dense a tmosphe re . Since the a i r in the 

cloud was init ial ly sa tura ted , some wate r vapor will condense, re leas ing 

latent heat and increas ing the free water content of the cloud. The latent 

heat thus r e l eased reduces the heating requi red to maintain the des i red 

t e m p e r a t u r e difference between the cloud and the surrounding a tmosphere 

The process ing equipment should provide for uniform heat distr ibution to 

min imize conduction lo s ses from the cloud to the a tmosphere and to r e ­

duce the likelihood of initiating convection c u r r e n t s . The amount of heat 

requi red to i nc rease the buoyancy of the cloud will va ry inverse ly with 

the init ial absolute humidity of the cloud and with the s teepness of the 



prevail ing lapse r a t e . As noted from 
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Fig , 1, Graph showing the r e ­
lat ionship between t e m p e r ­
a ture and density of sa tura ted 
water ( reference 3), Since 
the ambient t empera tu re of 
the a tmosphere falls with a l t i ­
tude, it can be seen that the 
potential amount of conden­
sation dec rease s with al t i tude. 

F ig . 1, the absolute humidity 

d e c r e a s e s with increasing 

altitude (because of d e c r e a s ­

ing t e m p e r a t u r ^ so that the 

method normal ly is more ef­

fective for clouds at the lower 

a l t i tudes . F igure 2 shows the 

rainfall pa t te rn over the ea r th . 

It should be noted that many 

a r e a s of heavy rainfall a r e 

over the oceans where the 

water is normal ly lost to man. 

These a r e a s might serve as 

noncontrovers ia l cloud fa rms 
4 

to supply less fortunate a r e a s . 

140 160 ISO 

Fig , 2. Map showing the mean annual rainfall (cnn) over the ear th . 
Regions with more than 300 c m / y e a r a re shaded (reference 4). 

H. L . Hackforth, Infrared Radiation (McGraw-Hill Book Co, , 
New York, I960). 
4 

H, Riehl, Tropical Meteorology (McGraw-Hill Book C o . , New York, 
1954), p , 75. 



V. DESIGN OF EQUIPMENT 

Heat may be introduced into the cloud by various nneans, including 

sys tems t r ans fe r r ing heat by d i rec t convection or by infrared radiat ion. 

The development of detailed engineering designs and complete cost e s t i ­

ma tes for e i ther system a r e p r e m a t u r e at this t ime because of the lack 

of re l iable meteorologica l data, but some fuel costs a r e es t imated . The 

use of the convection sys tem requ i res d i rec t contact between the heating 

apparatus and the cloud m a s s so that the apparatus must be mobile (car r ied 

by a hovering-type a i rc ra f t or balloon) and moved with and in the cloud. It 

appears from published data that nuc lear -powered subsonic winged a i r ­

craft could be designed and cons t ruc ted although such a i rc raf t have not 

yet been buil t . Small r e a c t o r s have been instal led and flown in winged 

a i r c ra f t . It can, the re fo re , be a s sumed that a i rborne r eac to r s a re 

p rac t i ca l heat sources for both a i rc ra f t propulsion (which is not essential) 

and for convection heat ing. 

The space and weight r equ i r emen t s for the proposed heating 

sys tem (nuclear) does not appear to be beyond the capabili ty of p r e s e n t -

day mach ines , A reac tor having an output in the range of 2000 Mw of 

heat is probably as l a rge as one would cur ren t ly plan to use . If the r eac to r 

is designed to operate at a power densi ty of 0, 5 Mw/ l i t e r , its core would 

be about 2. 3 m in d i ame te r by 2. 7 m long, a quite manageable s i ze . This 

power densi ty could be achieved in a r eac to r core designed to operate 

with t h e r m a l or n e a r - t h e r m a l neu t rons ; the modera tor could be ei ther 

beryl l ium oxide or a meta l l ic hydr ide ; and the fuel e lements might be 

concentr ic cyl inders of enr iched uranium clad with s ta in less s tee l . The 

total space requi red to house the r eac to r , ref lector , shadow shielding, 

and assoc ia ted equipment, and to accommodate the crew does not appear 

to be excess ive , 

A crude schemat ic d iagram of a system using an ind i rec t -cyc le 

r eac to r (which uses liquid me ta l or fused salt as the pr i inary coolant) for 



heating and propulsion is shown in F ig , 3, Gas turbines in s izes 

F i g . 3. Schematic drawing showing the layout of a hovering-type 
a i rc raf t equipped with a nuclear heat sou rce . The craft uses an 
indirect cycle in which a fluid is heated in the r eac to r and cooled 
in rad ia tors by the moving cloud m a s s , 

a l ready built would be adequate to supply all of the blower capacity 

requi red to draw in and heat the cloud m a s s . Some modification may 

be requi red , however, in the c o m p r e s s o r s t ages . Less than one-

quar t e r of the reac tor output is used in the propulsion systenn if 

nuclear heat is used, and the balance of the heat is dissipated through 

r a d i a t o r s . Most of the heat converted to mechanical energy in the 

turbine will eventually re tu rn to the cloud as heat . The gas t e m p e r ­

a ture at the inlet to the turbines must be 85 0 C or above to give 

reasonable efficiencies, although r eac to r design is s imple r at lower 

t e m p e r a t u r e s . Within l imi t s , the exit t empera tu re of the heated a i r 

can be controlled by dilution. If the cloud is to maintain its integri ty, 

the exit t empe ra tu r e of the heated air should be kept as low as possible 

in o rder to avoid unstable conditions. On the other hand, if the purpose 



is to init iate precipi ta t ion the d i scharge t empera tu re should be kept 

high enough to init iate convection cu r r en t s and turbulence. The craft 

would be maneuvered in the cloud to achieve the heat distr ibution r e ­

qui red . The problem of flying in turbulent a i r has to be considered. 

The reac tor would, of cou r se , have to be remote ly maintained. 

F o r safety of the populations in the a r ea s involved, c a r e must be taken 

to min imize the possibi l i ty of contaminating the cloud, and hence the 

wa te r , by fission products r e l eased by fuel-element fai lure or by 

s imi l a r inc idents . The possibi l i ty of an a i rc raf t accident would p rob­

ably r e s t r i c t the operat ion of the inachine to spa r se ly populated a r e a s . 

Foss i l - fue led sys tems a r e probably m o r e easi ly designed, 

but introduce problems in log is t ics , s ince l a rge quantit ies of fuel must 

be del ivered to the a i rc ra f t in flight and possibly to remote a r e a s . Roughly 

2000 Mw of heat output would requ i re 180 tons of fuel oil per hour . The 

la rge quanti t ies of water vapor and smoke par t i c les re leased from the com­

bustion of fuel may provide some fringe benefits since smoke par t ic les may 

provide a source of condensation nucle i . However, the magnitude of this 

effect is not known. 

Infrared energy sources a r e probably l imited to fixed locations 

(or l a rge surface vesse l s ) because of the inherent ly la rge size and high 

t e m p e r a t u r e of the e m i t t e r s if they a re to radiate useful amounts of power. 

The heating period for a given cloud m a s s may be re la t ively short , since 

it is only the period of t ime the cloud can be t racked by the ground-based 

un i t s . The emi t t e r s may be heated e lec t r ica l ly or possibly by the p r i m a r y 

fluid from h igh - t empera tu r e r e a c t o r s . Application of the system to the 

diss ipat ion of ea r ly morning fog around a i rpor t s and ha rbors is favored 

by the lower cost of off-peak e lec t r ic power. 

The t r a n s m i s s i o n of radiant energy from the ground to a distant 

cloud is inhibited by absorpt ion in the t r a n s m i s s i o n path. F o r the wave­

lengths of in t e re s t , this absorpt ion is p r i m a r i l y due to the t r ia tomic 

molecules (water vapor and carbon dioxide) in the a tmosphe re . Since 

a tmospher ic ozone is p rac t i ca l ly linnited to a layer at an altitude of 23 km, 

it is not impor tant to this p r o c e s s . It i s , t he re fo re , des i rab le to have the 

l a r g e s t possible f ract ion of energy in the bands of low absorpt ion in the 



a tmosphere , namely, in the wavelength ranges 0.60 — 0.80, 0.95 —1.08 , 

1,15—1,30, 1.52—1,75, 2,03 — 2,06, 2 , 1 0 ^ 2 , 3 5 , 3 ,35—4,05 , and 4 ,58 — 

4, 75 m i c r o n s . If the dis tr ibut ion is moved too far tow^ard shor te r wave­

lengths, Raleigh scat ter ing will cause loss from the beam; but in the r e ­

gion chosen it is unimportant . F o r radiation in these energy bands , the 

optimum source t empe ra tu r e is about 2200 K, However, reasonable ef­

ficiencies can be achieved with t empe ra tu r e s as low as 2000 K, at which 

construct ion and operating problems a r e s imple r . 

F igure 4 is a plot of the intensity of radiat ion as a function of 
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F i g . 4. Curve showing the energy spectrum emitted from a source at 
2000 K. Wavelengths absorbed by the a tmosphere a r e indicated by 
the shaded ver t i ca l bands under the curve . The energy in these bands 
consti tute about 60% of the tota l . The wavelength bands passed by the 
a tmosphere and by water droplets a re compared above the cu rve . The 
absorption band shown for the water droplets does not include the 
effects of Mie sca t te r ing . The absorption data shown a r e approxima­
tions to give a rough quantitative pic ture of the absorption in a 20-km 
path. They were obtained by averaging the resu l t s of P . Moon, J . 
Frankl in Inst . 230, 583 (1940); S. F r i t z , Transact ions of the Confer­
ence on Solar Energy 1 (University of Arizona P r e s s , Tucson, 1955); 
and J . H. Taylor and H. W. Yates, J . Opt. Soc. Am. 47, 223 (1957). 



wavelength for a blackbody source at 2000 K. At 2000 K, the total 

energy radiated from the surface of a blackbody is calculated from 
2 

the Stefan-Boltzman equation to be 91 wa t t s / cm . Over an assumed 

20-knn t racking d i s tance , water vapor and CO would completely 

absorb the energy indicated by c r o s s hatching (about 60% of the r a d i ­

ated energy) . If it is poss ible to use rad ia tors that emit select ively 

in the t r an spa ren t bands (or some of them), the over -a l l efficiency of 

t r a n s m i s s i o n should be inc reased . Alternat ively, it may be possible 

to use f i l ters that absorb the s ame bands as the a tmosphere and to 

recover some of the energy they abso rb . 

Since the radiat ion reaching the cloud will have been fi l tered 

by the t r i a tomic molecules in the path of t r ansmi s s ion (and possibly 

a lso by a f i l ter at the source) , l i t t le or no absorpt ion will take place 

in the vapor phase of the cloud. The absorpt ion bands of water d r o p ­

le ts a r e a l so shown in F ig . 4 . Normal ly , about half of the energy 

reaching the cloud would be absorbed by the water drople ts , the r e s t 

pass ing on through. Actually, s ince there will be considerable Mie 

sca t te r ing in the clouds, the fract ion absorbed will be c lose r to unity. 
5 

(Byers de sc r ibe s a layer of cloud more than 50 m thick as a 'b lack-

body. ") 

The location of the heating apparatus with respect to natural 

obstruct ions should be selected to attain l ine-of-s ight t r ansmis s ion 

from source to cloud for the longest possible t i m e . The accuracy of 

the ref lec tor system is not c r i t i c a l since the t a rge t will be re la t ively 

5 
H. R. B y e r s , Genera l Meteorology (McGraw-Hill Book C o . , 

New York, 1944), p 36. 



l a r g e . F igure 5 shows a schemat ic a r rangement of an unfiltered 

F ig . 5. Infrared source with cyl indrical radia tor and ref lec tor . 
F o r efficient use of the energy, however , the ref lector should 
be spher ical or parabol ic to give st igmatic focusing. AA', 
shown at the left of the f igure, i l lus t ra tes some construct ion 
features that would be included in the design of the infrared r e ­
flector sys tem. The assembled ref lector sys tem, including the 
maneuverable features, is shown on the r ight . 

e lec t r ica l ly heated reflector s y s t e m . 

VI. ILLUSTRATIVE PROBLEM 

To i l lus t ra te some of the economic p a r a m e t e r s c h a r a c t e r ­

ist ic of the p r o c e s s , let us consider the problem of supplying 2.5 cm 
2 S 3 8 

of rainfall over an a r e a of 100 km (2.5 X 10 m = 6.7 X 10 gal) 
1 

in one day. Typical costs for water a r e noted in Table I. In addition, 

TABLE I. Average costs for water (as compiled in reference 1). 

Water for i r r iga t ion 1 cent/1000 gallons 
( $ 3 . 24 /ac re foot) 

Industr ia l water 2.5 cents per 1000 gallons 

Household water 30 cents per 1000 gallons 



the cost of t ranspor t ing wate r on a l a rge scale is es t imated to be 5 —15 

cents pe r thousand gallons per hundred mi l e s , the cost in a par t icu la r 

instance depending on the t e r r a i n . It should be noted that costs cons ider ­

ably higher than the averages cited in Table I can be economically accept­

able . The to lerable cost of w^ater would cer ta inly be higher where the 

value of land would be substant ia l ly inc reased by a modest augmentation 

of the normal na tura l rainfall than in an a r e a where all the water had to 

be impor ted . If the water can be used in sequence by severa l u s e r s , as 

is common prac t i ce among communi t ies along r i v e r s , the cost per u se r 

can be correspondingly reduced. Thus, economic considerat ions favor 

supplying rain to the headwaters of a na tura l drainage system instead of 

d i rec t ly to a single u s e r . A quite different, but no less economically 

valuable , application is the d ivers ion of rainfall from an a r ea threatened 

by flood. 

It is proposed that a bank of c louds, which would normal ly yield 

thei r precipi ta t ion on the windward side of a mountain range, should be 

heated by a i r - b o r n e r eac to r s (Fig. 6) to ra i se them to a favorable a i r 

s t ra tum for de l ivery to the lee s ide . It is assumed that the altitude of 

the clouds needs to be inc reased from 2. 0 km where the ambient t e m p ­

e r a t u r e is 3 C to 2. 7 km where it is - 0 , 5 C. It is further assumed that 

3 cc of w^ater can be prec ip i ta ted from each cubic m e t e r of cloud. Table II 

l i s t s some values for prec ip i table w^ater in clouds. In addition, the p r e -

TABLE II. Observed liquid water content of cumulus- type clouds 
over New J e r s e y and F lo r ida during the s u m m e r . 
[ F r o m the U . S . A . F . Handbook of Geophysics , Re 
vised Edition (Macmillan C o . , New York, 1961), p. 7-7] . 

C l o u d type 

C u m u l u s h u m i l i s 
C u m u l u s c o n g e s t u s 
C u m u l o n i m b u s 

T e m p e r a t u 

10 to 24 
3 to 11 

10 to -8 

r e W a t e r co 
A v e r a g e 

1.0 
2 . 0 ^ 
2 . 5 

nt 
3 

ent ( g / m ) 
M a x i m u m 

3 . 0 
6 . 6 

10.0 

Es t ima ted . 



LEGEKD 

^ NATURAL CLOUD PATU 

^ - HEATED CLDUD PATH 

{ ) } HUTED TO SURPRESS PRECIPITATION 

( 2 ) HEATED TO INITIATE PRECtPtTATtOM 

Fig . 6. Schematic drawing of a hovering-type a i rc raf t as it applies 
heat to a cloud to cause it to r i se gradual ly without turbulence and 
pass over a mountainous a r e a . At some location down wind, p r e ­
cipitation is initiated by subjecting the cloud to rapid heating to 
es tabl ish convective cu r r en t s within the cloud. 

o 
vailing lapse ra te in the a r e a is assumed to be 0. 5 C per hundred 

m e t e r s and the sa tura ted adiabatic lapse ra te in the cloud is 0. 6 C 

per hundred i n e t e r s . Thus, the cloud must be warmed 0. 7 C to lift 

it 700 m. The heat required to initiate precipi ta t ion ^vhen the cloud 

reaches the des i red site is a r b i t r a r i l y assumed, for lack of a be t t e r 

value, to be half the amount required to ra i se the cloud under stable 

conditions. Of cou r se , other potential precipi ta t ion methods now^ being 

investigated (such as seeding clouds with hygroscopic nuclei or by e lec ­

t r ica l ly charging the water droplets) may turn out to be more economi­

cal ly des i r ab l e . 



The c o s t a n a l y s i s is s u m m a r i z e d in T a b l e I I I . F o r the sake of 

c o n v e n i e n c e , c loud m a s s e s a r e m e a s u r e d in c loud u n i t s . A unit of 

c loud is a r b i t r a r i l y def ined a s a v o l u m e 1 km in d i anne te r and 1 km 
8 3 

long (7. 8 X 10 m ). The a c t u a l c loud m a y c o n s i s t of a f r a c t i o n of 

a uni t o r of s e v e r a l u n i t s . The c a l c u l a t i o n s i n d i c a t e that 450 cloud 
4 

un i t s a r e n e e d e d and w i l l r e q u i r e 8 X 10 M w - h r of h e a t for l i f t ing. 

If the h e a t i n g is to be p e r f o r m e d wi th in a 2 4 - h r d a y , then two 2000-Mw 

a i r - b o r n e h e a t s o u r c e s a r e r e q u i r e d . One s o u r c e wi l l be r e q u i r e d at a 
4 

l a t e r t i m e to supp ly t h e h e a t (4 X 10 M w - h r ) to c a u s e p r e c i p i t a t i o n o v e r 
5 

t he d e s i r e d a r e a . A t o t a l of 1. 2 X 10 M w - h r of h e a t i s , t h e r e f o r e , r e ­

q u i r e d . 

If the c o s t of n u c l e a r fuel is a s s u m e d to be $ 0 , 0 0 1 / k w - h r , which 

c a n be a t t a i n e d c u r r e n t l y in s t a t i o n a r y r e a c t o r s , the to ta l c o s t of hea t 

is $120 000 and t h e uni t c o s t is 20 c e n t s p e r 1000 g a l l o n s . The c o s t of 

the a i r c r a f t ( inc luding o p e r a t i o n , m a i n t e n a n c e , d e p r e c i a t i o n , and o t h e r 

i n d i r e c t c o s t s ) is not e s t i m a t e d , a l t h o u g h th i s is an e s s e n t i a l f a c t o r in 

d e t e r m i n i n g the e c o n o m i c f e a s i b i l i t y of the m e t h o d . 

VII . CONCLUSIONS 

The p u r p o s e of t h i s p a p e r is to inv i t e a t t e n t i o n to a p o s s i b l e 

m e t h o d for modi fy ing and c o n t r o l l i n g w e a t h e r . It is conc luded tha t 

t h e p r o c e s s of fers suf f ic ien t p r o m i s e to w a r r a n t f u r t h e r s t udy . 

It is c l e a r t ha t an e x p e r i m e n t a l p r o g r a m is r e q u i r e d to d e t e r ­

m i n e the v a l i d i t y and l i m i t s of a p p l i c a b i l i t y of the a s s u m p t i o n s , to 

d e m o n s t r a t e the f e a s i b i l i t y of t h e p r o c e s s , and to e s t a b l i s h c o s t da t a 

fo r spec i f i c l o c a t i o n s and a p p l i c a t i o n s . P r e l i m i n a r y da t a to d e m o n ­

s t r a t e the f e a s i b i l i t y of the p r o c e s s shou ld be ob t a inab l e f rom m o d e s t 

e x p e r i m e n t s , 



TABLE III. Economics of weather modification. 

1. Assumptions for calculat ions 

Average al t i tude, initial 2. 0 km 

final 2. 7 km 

Prevai l ing lapse ra te 0.5 C/100 m 

Saturated adiabatic lapse ra te „ , o„ , , „ . 
0.6 C/100 m 

m cloud 

Ambient t e m p e r a t u r e at 2. 0 knn 3 C 

Assumptions per unit of cloud 

Diamete r 1000 m 

Length 1000 m 

Volume 7. 8 X 10 m 
3 

Average densi ty at alt i tude 1 . 1 kg /m 
of 2, 0 to 2. 7 km 

Mass 8.6 X 10 kg 
3 

Available water 3 c c / m 
3 3 

Total available water 2. 3 X 10 m 

Specific heat of cloud (c ) 250 ca l / C-kg 

Heat requ i red to maintain one unit of ^ 
cloud at ambient t empe ra tu r e 1.5 X 10 cal 

during r i se 

Cloud units requi red per day 450 

Total heat requi red to elevate cloud « vx i/̂ '* ^, 
, /• 8 X 10 Mw-hr 

to t r ave l lane 
4 

Heat required to init iate precipi ta t ion 4 X 10 Mw-hr 
5 

Total heat requi red to del iver water 1. 2 X 10 Mw-hr 


